
The Redmond to Cary Express - A Comparison of Methods to
 Automate Data Transfer Between SAS and Microsoft Excel

Michael T. Mumma, Westat, Rockville, MD

ABSTRACT

Data transfer between SAS and Microsoft Excel is addressed by

many SUG papers, and is continuously a hot topic within SAS-L.

There is even a web page dedicated solely to this subject (Cram

1999). Many factors determine the 'best' (or simply viable)

approach to performing this transfer. Five methods of automating

this exchange are presented, including example SAS code.

Methods discussed will include Dynamic Data Exchange (DDE),

SAS/ACCESS (PROC ACCESS, PROC IMPORT, and PROC

SQL), and third-party software products under the Windows 9x

operating systems. Some useful, yet seldom documented, Excel

macro commands (issued via DDE) will be presented, as well as

sources of documentation for each of the five methods.

INTRODUCTION

Microsoft Excel is a user-friendly and popular spreadsheet

application used to enter, display, and analyze data. Many

techniques can be used to convert Excel data into SAS data sets.

One common technique is to export Excel data to a text file, then

use a SAS DATA step with an INFILE statement to read the text

file into a SAS data set. Various import/export wizards can also

be used. Refer to Window by Window – Capturing Your Data

Using the SAS System for an excellent overview. Using these

methods often involves many manual steps, which must be

performed each time the Excel file is updated. The methods

available to transfer data from Excel to SAS are limited when the

objective is to automate the conversion process and eliminate

user intervention. The operating system, Excel version, SAS

version, SAS software licensed, and data characteristics will

determine which methods are viable solutions. The ‘best’

approach should also take into consideration programming

requirements, ease of code maintenance, and frequency of

updates to the Excel data.

The purpose of this paper is to:

1) compare five different methods of automating the transfer of

Excel data to SAS data sets. These include:

- Dynamic Data Exchange (DDE)

- PROC ACCESS

- PROC IMPORT

- PROC SQL

- Third party software (e.g. DBMS/COPY, DBMS/Engines,

Stat/Transfer) ;

2) provide example SAS code utilizing each method; and

3) provide references for documentation of each method.

Within example SAS code, capital lettering denotes SAS

keywords, where lowercase lettering is used for data set names,

variable names, filerefs (file references), and librefs (SAS library

references). A simple Excel spreadsheet with four columns (a

character with embedded spaces, two numerics, and a date) and

two rows is used as model data. Shown in Figure 1 is the

spreadsheet Exsheet97. An identical file, Exsheet95, is saved in

Excel 5.0 format. A third file, Exsheet4SQL is also used as a

spreadsheet model for the PROC SQL example. Note that

extraneous text, such as titles, have been removed (Figure 2).

Figure 1 - Example Spreadsheets Exsheet97.xls/Exsheet95.xls

Figure 2 - Example Spreadsheet Exsheet4SQL.xls

Space does not allow for full discussion of the complete syntax of

all statements and procedures within example code. However, an

attempt will be made to point out areas that can be especially

tricky. There are many intricacies inherent to each of these

methods. The reader is advised to refer to other sources,

including SAS-L, to resolve these issues.

DYNAMIC DATA EXCHANGE (DDE)

Dynamic data exchange allows SAS to establish a connection

with a running Windows application similar to a client-server

relationship. SAS (the client) can request data from and issue

commands to the application (the server) using INPUT and PUT

statements. In order to retrieve data from Excel using DDE, the

workbook containing the Excel data must be open.

For the initial DDE connection to be established, Excel must be

running. Either a X or %SYSEXEC (used in SAS macro code)

statement is used to invoke Excel from within the SAS program.

Note the NOXWAIT and NOXSYNC options must be set. Getting

the correct X statement to open Excel can be tricky. Be careful

that embedded spaces do not exist within the X statement, for

example “Program Files”. If necessary, use the truncated DOS

name to point to the executable file that invokes Excel. A SLEEP

function is then used to allow Excel time to completely open

before SAS begins to send DDE commands.

A specialized FILENAME statement is used to create the DDE

link to the Excel application. Any statements written to the fileref

(in the example code, the fileref is commands) will be sent to

Excel via DDE. Make sure that within Excel, the ‘Ignore other

Applications’ option is not checked (under

Tools..Options..General). A PUT statement issues the ‘Open’

Excel macro command from SAS to Excel in order to open the

Excel workbook. [Note: When opening spreadsheets that contain

VBA macros, a message appears, warning the user and

prompting whether they want to continue. Macro protection within

Excel may be (cautiously) turned off to prevent this warning

message and eliminate the need for user intervention.]

Once the workbook is open, another specialized FILENAME

statement is used to reference a range of cells in the worksheet

within the open workbook. The text within quotation marks is

referred to as the DDE triplet. For Excel, the triplet has the syntax

‘EXCEL|[myfile.xls]mysheet!RxCy:RwCz’ where x,y,w and z are

integers used to denote the range of cells within Excel. (When

using DDE to interface with other applications, the DDE triplet

may have a slightly different structure.) Data within these cells is

then available for input using a DATA step with an INFILE

statement, similar to reading a text file. Note the NOTAB option

on the FILENAME statement following the DDE triplet. The DSD

and MISSOVER options, with a tab (‘09’x) as a delimiter, is then

used on the INFILE statement to read data from the spreadsheet.

This is done to correctly input strings containing embedded

spaces (in this case the name variable). See the SAS

Companion for the Microsoft Windows Environment, Version 6,

Second Edition for an overview, or Schreier (1998) for an

excellent discussion on how the NOTAB option operates. Also

note the use of INFORMAT and FORMAT statements to read

date values (which are passed as strings) and prevent truncation

of character variables. A QUIT command, within a _NULL_ DATA

step, is then sent to quit Excel.

OPTIONS NOXWAIT NOXSYNC;

 X "C:\Progra~1\Micros~4\Office\EXCEL";

DATA _NULL_;

 X = SLEEP(5);

RUN;

FILENAME commands DDE 'EXCEL|SYSTEM';

DATA _NULL_;

 FILE commands;

PUT '[OPEN("C:\nesug99\exsheet97.xls")]';

RUN;

FILENAME myssheet DDE

'Excel|[exsheet97.xls]Sheet1!r4c2:r50c5' NOTAB;

DATA mysasset;

 INFORMAT name $25. bdate MMDDYY8. ;

 FORMAT name $25. bdate MMDDYY8. ;

 INFILE myssheet DLM='09'X DSD MISSOVER;

 INPUT name height weight bdate;

 IF name NE ' ';

RUN;

DATA _NULL_;

 FILE commands;

 PUT '[QUIT]';

RUN;

There are some disadvantages to using DDE as a means of

transferring data between Excel and SAS. First, as previously

mentioned, the application (in this case Excel) must be running

before a DDE connection can be established. This can

significantly slow down the conversion process, especially if long

sleep times are required. Also, because numeric values are

passed as formatted strings, loss of precision can occur.

Another disadvantage to using DDE is that the documentation for

the Excel 4 macro commands sent to Excel (you cannot send

VBA commands to Excel from SAS) is very poor and difficult to

find. I was lucky enough to find a copy of the ‘Excel 4.0 Function

Reference’ which contains most of the available macro

commands. Documentation for using DDE within SAS seems to

be scattered among SAS technical notes (SAS TSD #325, Note

F885) and SAS Companion for the Microsoft Windows

Environment. Often, examples of the most useful DDE

commands are not included. The best resources found for

answering more in-depth questions are often SUG papers (see

Schreier (1998), Kuligowski (1999), Asam and Usavage (1997),

Lee (1997)) and SAS-L. Below are examples of useful Excel

macro commands as they would appear within the SAS code.

DATA _NULL_;

 FILE commands;

* Opens a file as read-only;

 PUT '[OPEN("c:\mydir\myfile.xls",0,TRUE)]';

* Saves the current file;

PUT '[SAVE]';

* Saves current file with new name;

PUT '[SAVE.AS("c:\mydir\myfile.xls")]';

* Deletes a file;

 PUT '[FILE.DELETE("c:\mydir\myfile.xls")]';

* Minimizes the Excel application;

PUT '[APP.MINIMIZE()]';

* Maximizes the Excel application;

PUT '[APP.MAXIMIZE()]';

* Closes the current workbook;

PUT '[CLOSE]';

* Quits Excel;

PUT '[QUIT]';

RUN;

SAS will not resolve macro variables enclosed within single

quotes. Therefore, if SAS macro variables are to be used within

PUT statements, a slightly different syntax is required. A single

set of double quotes should enclose all text after the PUT

statement. Then, two sets of double quotes should enclose the

appropriate command parameters. For example, if the file

reference for the Excel spreadsheet is a macro variable, the

following command could be used to open this file before

importing the data:

%LET newfile = c:\nesug99\exsheet4sql.xls;

DATA _NULL_;

 FILE commands;

* OPEN command with macro variable ;

 PUT "[OPEN(""&newfile"")]";

RUN;

There are some ways around knowing the antiquated Excel

macro commands. One way is to create a VBA macro within

Excel. This can easily be done using the macro recorder and/or

Visual Basic editor. For example, a VBA macro can be created

which saves an Excel file as some form of text file (i.e. tab

delimited, column delimited, csv, etc.). A single DDE command

can then be issued from SAS to run the stored VBA macro. Once

the text file is created, SAS can read in the text file using a

standard DATA step with INFILE statement. The command to run

a stored VBA macro is as follows:

 PUT '[RUN("myfile.xls!MyMacro",False)]';

 where MyMacro is the name of the created VBA macro within

myfile.xls. Note that the macro names are case sensitive. (See

SAS note F885 for more details.)

The most significant advantage of DDE is that it is the only

method to automate the import of Excel files without using

another software product, such as SAS/ACCESS or

DBMS/COPY. Because the range of data is defined explicitly

within the FILENAME statement, the Excel spreadsheet can

contain extraneous information, such as titles, column headers,

comments, etc. However, explicitly defining the range within the

SAS code requires that the code be modified if more rows or

columns are added to the spreadsheet. In the above example,

this problem was somewhat circumvented by defining a range

much larger than the current data. A subsetting IF statement is

then used to eliminate blank records. In this way, if more records

are added to the spreadsheet, no modification to the SAS code is

required.

Another advantage to using DDE is that once familiar with DDE

concepts and techniques (e.g. X statements to invoke

applications, DDE triplets), DDE can later be used to interface

with other Windows applications such as MS Word (see Bross

(1997)) and MS Access (see Asam and Usavage (1997)). In

addition, the ability to issue a DDE command to run a stored VBA

macro can be especially powerful.

SAS/ACCESS

SAS/ACCESS software provides a number of methods to transfer

data between various database management systems (DBMS),

PC file formats (including Excel), and the SAS system. Within

SAS/ACCESS, three procedures can be used to import Excel

data: 1) PROC ACCESS, 2) PROC IMPORT (SAS version 7), and

3) PROC SQL. Various components of SAS/ACCESS must be

installed and licensed at your site in order to use these methods.

[Note: In order to determine the SAS components currently

licensed at your site, submit the following SAS code: PROC

SETINIT; RUN; Installed components will be displayed in the

log.]

PROC ACCESS

To use PROC ACCESS to import Excel data, the SAS/ACCESS

to PC Files Formats software must be installed and licensed at

your site. The structure of the ACCESS procedure is slightly

unconventional. To access external data, two types of descriptor

files must be created: an access descriptor and a view descriptor.

The access descriptor contains information such as file type (i.e.

Excel), file name, file location, worksheet name, column names,

and data range. The view descriptor is created from an access

descriptor and determines which variables (columns) are to be

selected. Both descriptor files can be created within one PROC

ACCESS procedure. However, a view descriptor can also be

created from an existing access descriptor in a separate

procedure. Access and view descriptors can be stored as

permanent files by using a permanent LIBNAME statement just

like a SAS data set. The view descriptor can then be used in any

subsequent procedure or DATA step. See Engle (1997) for an

excellent discussion of creating access and view descriptors.

Below is an example of creating an access and view descriptor in

one procedure:

LIBNAME my_lib "c:\nesug99";

PROC ACCESS DBMS=EXCEL;

/* Creates the access descriptor */

 CREATE my_lib.my_acc.ACCESS;

/* Required-Could also use a fileref here */

 PATH='c:\nesug99\exsheet95.xls';

 SCANTYPE = YES;

 WORKSHEET = 'Sheet1';

/* Optional-Could also used a named range */

 RANGE 'b3..e5';

 GETNAMES = YES;

 SKIPROWS = 0;

 RENAME name = fullname;

 TYPE NAME = C;

 MIXED = NO;

/* Creates the view descriptor */

 CREATE my_lib.my_view.VIEW;

 SELECT ALL ;

 LIST ALL;

 RENAME bdate = birthday;

RUN;

PROC PRINT DATA = my_lib.my_view; RUN;

The first CREATE statement creates the permanent access

descriptor my_acc. The WORKSHEET statement identifies which

worksheet contains the data to import (default is Sheet1). The

RANGE statement selects the cells containing Excel data to

import. Note in the example that the range includes column

headers. A named range (created within the Excel worksheet)

could also be used. Also note the syntax of specifying a range of

cells is different from that used in DDE. The GETNAMES=

statement determines whether SAS generates variable names

from column names in the Excel file's first row of data. If

GETNAMES=YES, SAS also sets the SKIPROWS value to 1. If

GETNAMES=NO, or if the column names are not valid SAS

names, PROC ACCESS uses Var0, Var1, etc. The SCANTYPE=

option (which must precede editing statements) and the TYPE

and MIXED= options determine how SAS assigns data types (i.e.

character or numeric) and formats to each variable. (By default,

formats are assigned based on the Excel formats found in the first

row of data.) See SAS/ACCESS Software for PC File Formats,

Version 6, First Edition for a complete description of how these

options work.

If this code leaves you slightly (or completely) confused, take

heart. SAS release 6.12 contains an Import Wizard, which

generates PROC ACCESS code through a series of interactive

windows (selecting Import from the File menu on the SAS toolbar

starts the Import Wizard). After the import has been completed,

simply recall the program to see the PROC ACCESS code. See

Kuligowski (1999) for a thorough discussion on using the Import

Wizard.

One of the biggest drawbacks to PROC ACCESS is Excel files

must be saved in either Microsoft Excel 4 or 5/7 format. Neither

the ACCESS nor DBLOAD procedures interface with files in Excel

97 (Version 8) format. An add-on product is available from the

SAS Institute, which allows the user to use the Import Wizard to

read Excel 97 files. This add-on product does not, however,

generate or allow use of PROC ACCESS (or PROC DBLOAD)

statements, and therefore the conversion cannot be automated

(see http://www.sas.com/service/techsup/unotes/V6/F642.html).

One workaround to this problem is to save the Excel 97 file in the

Excel 97/5 dual file format by using the Save As command on the

File menu. PROC ACCESS can then interface with the dual

format Excel file. Another solution is to upgrade to SAS version 7

and use PROC IMPORT (discussed below).

Another problem with PROC ACCESS is that a specified range of

cells cannot contain a block of empty cells. This is important if

records are regularly added or removed from the spreadsheet.

One solution is to not specify any data range (the default range is

the entire worksheet). The SKIPROWS= option can then be used

to specify the first row of data if extraneous data, such as titles,

are used. However, the GETNAMES= option must be set to NO

since GETNAMES=YES automatically sets SKIPROWS= value to

1. Variable will then need to be renamed from the default Var0,

Var1, etc. convention using a RENAME statement. This allows

modifications to the spreadsheet without subsequent

modifications to the SAS code.

PROC IMPORT

SAS version 7 contains new IMPORT and EXPORT procedures,

which like PROC ACCESS, perform conversion of many file

formats, including Excel files, to SAS data sets. A license for

SAS/ACCESS for PC File Formats is still required. The code is

fairly simple, and somewhat similar in structure to PROC

ACCESS. However, unlike PROC ACCESS, the creation of

access and view descriptors is not required. Also, PROC

IMPORT creates a SAS data set instead of a view descriptor.

PROC IMPORT code can also be generated using the Import

Data wizard provided with SAS v 7. Below is the PROC IMPORT

example code.

FILENAME mysheet "c:\nesug99\exsheet97.xls";

PROC IMPORT DATAFILE = mysheet

 OUT = mysasset

 DBMS=EXCEL97

 REPLACE ;

 GETNAMES = YES ;

 SHEET = sheet1;

/* Cannot use absolute range w/Excel97 files */

 RANGE = myrange;

RUN;

The REPLACE statement is required in order to overwrite an

existing SAS data set. The DBMS= statement determines the

type of file to import. For Excel files, the choices are EXCEL,

EXCEL4, EXCEL5, and EXCEL97. [Note: PROC IMPORT can

recognize the difference between Excel Version 4 and 5

spreadsheets when you use the extension .XLS, regardless of

whether you specify DBMS=EXCEL, DBMS=EXCEL4, or

DBMS=EXCEL5. However, you must specify DBMS=EXCEL97 to

import Excel 97 files.] GETNAMES= statement determines

whether SAS generates variable names from column names in

the first row of data. The SHEET= statement, like the

WORKSHEET statement in PROC ACCESS, identifies the Excel

worksheet that contains the data to import. If you do not specify

SHEET=, PROC IMPORT defaults to the first spreadsheet in the

file.

The RANGE statement is identical to RANGE in PROC ACCESS

with one (unfortunate) exception. When importing Excel 97 data,

the data range definition can no longer be defined within the SAS

code using an absolute range (i.e. R3..C5). Instead, a range-

name must be created within the Excel worksheet. This can be

done easily enough. (Highlight the range of cells. Then select

Insert..Name..Define and enter a name alias for the range of

cells.) In the example, range-name is myrange. The range-name

is then used in the RANGE statement. However, not having the

ability to define an absolute range within the SAS code can be

cumbersome when updates or modifications to the SAS code or

spreadsheet are required.

The range-name requirement aside, PROC IMPORT does have

some distinct advantages over PROC ACCESS. Most

importantly, PROC IMPORT can interface with Excel 97 files,

where PROC ACCESS cannot. In addition, unlike PROC

ACCESS, the defined range-name can contain empty cells.

PROC IMPORT can also access data whether the Excel file is

open or closed (PROC ACCESS requires the spreadsheet file to

be closed). Also, the creation of access and view descriptors is

not necessary.

The improvements implemented in the SAS/ACCESS IMPORT

procedure greatly improve functionality and ease of programming.

PROC ACCESS has a slight convenience in that RENAME,

DROP, and FORMAT statements can be included within one

procedure (see SAS/ACCESS Software for PC File Formats for

other optional PROC ACCESS statements not included in this

discussion.) However, the RENAME statement may not be as

necessary with PROC IMPORT because truncation of variable

names is less of a concern due to version 7 support of 32

character variable names.

Using PROC ACCESS/PROC IMPORT has a number of

advantages over other methods of importing Excel data. Excel

date and time values are automatically converted to SAS dates

and times if appropriately formatted within the Excel spreadsheet.

Therefore, no LENGTH or INFORMAT statements are required in

order to prevent truncation of character variables or perform

data/time conversions. See 'Datetime Conversions in the

ACCESS Procedure' in Chapter 8 of SAS/ACCESS Software for

PC File Formats for more details.

PROC SQL (SQL PASS-THROUGH FACILITY)

To use the SQL procedure pass-through facility to import Excel

data, the SAS/ACCESS Interface to ODBC software must be

installed and licensed at your site. Also, the appropriate ODBC

drivers for Excel must be installed on the PC running the SAS

program.

When using PROC SQL, the SAS/ODBC interface does not

obtain data directly from a data source (in this case the Excel

spreadsheet). Instead, SAS interfaces with an ODBC manager,

which then interfaces directly with the Excel file. Therefore, the

ODBC manager must have the name and path of the Excel file

from which to retrieve data. An alias, or data source name (DSN),

for the Excel file can be created in Windows 95/98 using the

ODBC manager. A data source name can then be assigned to a

particular Excel spreadsheet. Shown in Figures 3 and 4 are the

screens used to create the DSN (my_dsn) used in the SQL

example. See Kuligowski (1999) or Li (1999) for more details on

how to create a DSN alias using the Windows ODBC manager.

Figure 3 - ODBC Administrator Screen

Figure 4 - ODBC Microsoft Excel Setup Screen

Once the DSN is created, Excel data can be read using PROC

SQL. The basic PROC SQL syntax is as follows:

 PROC SQL;
 CONNECT TO ODBC (DSN=my_dsn);

 CREATE TABLE mysasset AS

 SELECT * FROM CONNECTION TO ODBC

 (SELECT * FROM "Sheet1$");

DISCONNECT FROM ODBC;

QUIT;

An alternative to creating a DSN using the ODBC manager is to

pass the DSN to the ODBC manager using the COMPLETE=

option. The text inside the double quotes following this option can

be a DBMS-specific connect-string, which specifies the file,

ODBC drivers, and other options used to establish a connection.

The COMPLETE= option can also be used to override options

within an existing DSN, such as the Excel file from which to

retrieve data, while keeping other DSN parameters unchanged

(see example code below). One advantage to using the

COMPLETE= option is that ODBC parameters, such as the Excel

file, can be changed dynamically within the SAS code using

macro variables. Also, because DSNs do not have to be created,

the SAS code can be easily transported among different

machines.

PROC SQL assigns variable names based on the first row of data

within the spreadsheet. By default, character variables are given

a length and format of character 200. One way to override the

default is to use a combination of an ALTER and FORMAT

statement within the SQL code. Another way around the 200-

length of character variables is to SET the PROC SQL created

data set into another data set using a DATA step with LENGTH

statements.

Provided below is a more robust example of retrieving Excel data

using PROC SQL using the COMPLETE option, and with ALTER,

FORMAT, SELECT and WHERE expressions included.

PROC SQL;

 CONNECT TO ODBC

(COMPLETE="DSN=my_dsn;DBQ=c:\nesug99\newS

QLfile.xls");

 CREATE TABLE mysasset AS

 SELECT bdate, name format=$30., weight_l

 FROM CONNECTION TO ODBC

 (SELECT * FROM "Sheet1$")

 WHERE weight_l > 200;

 ALTER TABLE mysasset

 MODIFY name char(30) ;

DISCONNECT FROM ODBC;

QUIT;

Because Excel does not support writing data ranges to the ODBC

drivers, there is no way to define a data range with the Excel file

when using PROC SQL. Consequently, no extraneous text, such

as titles, can be in the spreadsheet (shown in Figure 2).

However, because no range is specified, modifications are not

necessary when columns or rows are added to the Excel file. A

definitive disadvantage, however, is that if the data set contains

many character variables, each variable must be reformatted

within the SAS code if variable length is to be less than 200.

When retrieving Excel data, the spreadsheet can be open or

closed. Also, PROC SQL allows use of most of the features and

structure of the SQL language. For example, SELECT

expressions will allow only certain variables to be retrieved and

the WHERE expression allows observations to be easily filtered

and merged. See the SAS Guide to the SQL Procedure, Usage

and Reference, Version 6 for the complete syntax.

THIRD PARTY SOFTWARE

A number of software products perform data conversion between

different data formats, including SAS data sets. Some of the best

examples are DBMS/COPY, DBMS/Engines (both available from

Conceptual Software, Inc., http://www.conceptual.com) and

Stat/Transfer (available from Circle Systems,

http://www.stattransfer.com). Smith and Carpenter (1999) provide

a detailed discussion on the use of these products. The reader is

encouraged to try these products (both companies provide trial

versions on their websites) and/or see Hilbe (1996) for a review.

DBMS/COPY can be run interactively to develop a program to

perform a data conversion. This program can then be executed in

batch mode through a DOS command. Because SAS can issue

DOS commands to the OS, a stored DBMS/COPY program can

be executed to automatically convert an Excel spreadsheet into a

SAS data set. A SAS statement to execute a stored

DBMS/COPY program is shown below:

X "c:\progra~1\dbmscopy\dbmswi32 PLUS

c:\nesug99\dbmscode.prg";

Stat/Transfer also has the capability to be run in batch mode by

issuing a DOS command. However, the user interface cannot be

used to create a program to perform the conversion. Instead,

DOS commands must be issued from SAS using X statements.

SAS code to convert the example spreadsheet Exsheet4SQL to a

SAS data set using Stat/Transfer is shown below. The

Exsheet4SQL file is used because Stat/Transfer does not allow

for extraneous data within the spreadsheet. Prior to issuing the

DOS command to perform the conversion, the current directory

must be changed to where Stat/Transfer is installed. Also note

that the transfer creates a permanent SAS data set, and therefore

must be referenced within SAS by using the two part naming

convention.

X 'CD C:\PROGRAM FILES\STATTRANSFER5';

X 'ST C:\nesug99\exsheet4sql.xls

c:\nesug99\mysasset.sd2 /Y';

LIBNAME here 'c:\nesug99';

PROC PRINT DATA = here.mysasset;

RUN;

With DBMS/COPY, the interactive menu makes it easy to format,

rename and drop variables, and sort and filter records. Also,

DBMS/COPY can convert Excel data to a number of different

SAS formats, including version 6.08-6.12 (*.sd2), SAS for

PC/DOS (*.ssd), and version 5 and 6 transport files (*.v5x and

*.v6x). However, when using DBMS/COPY, a range containing

empty cells cannot be selected. Therefore, the DBMS/COPY

program will have to be revised when rows or columns are added

or removed from the Excel file. Also, the Excel file must be

closed during data conversion. When using Stat/Transfer, the

Excel workbook can be either open or closed. However, no data

range can be specified, and therefore no extraneous text is

allowed. In addition, variables cannot be renamed or dropped,

and records cannot be conditionally selected. However, because

no program is created, updates are not required.

Another software product, DBMS/Engines, can convert Excel

spreadsheets (and many other DBMS formats) to SAS data sets.

However, unlike the previous two products, X statements are not

required. Access to the Excel file is accomplished by specifying a

database-specific engine name within a LIBNAME statement. For

example, the LIBNAME statement below enables SAS to access

the data in the example Excel 95 spreadsheet (engine name is

DBEXCEL5). The SPREAD= options specifies the worksheet,

data range, and row(s) in which the variable names are located.

In this example, the data range is from row 4 to 100, column B to

E, on worksheet 1 (i.e. the first worksheet in the workbook), with

variable names located on row 3. Note that the data range

contains empty cells (see Figure 1).

LIBNAME my_lib DBEXCEL5 'c:\nesug99' my_file

= "exsheet95" SPREAD ='1,4,100,B,E,3,3';

PROC PRINT DATA = my_lib.my_file;

RUN;

One advantage to DBMS/Engines is that a SAS data set does not

actually need to be created. The Excel data can be accessed

directly through the two-level data set naming convention

whenever used in a PROC or DATA step (PROC PRINT in the

example.) Because the data range can contain empty cells, no

updates to the LIBNAME statement would be needed when rows

are added. Record and variable selection can be accomplished

using traditional DATA step IF and DROP/KEEP statements,

respectively. The syntax on the LIBNAME options can be slightly

cumbersome. However, once the appropriate LIBNAME

statement is created, the conversion from Excel to SAS (and

back) is transparent. (Note: A PATH statement must be added to

the CONFIG.SAS file in order for SAS to know where the

conversion engines are located.)

Because these three software products support almost all Excel

formats (2, 3, 4, 5, and 97), problems with reading different

versions of Excel is not a concern as with SAS/ACCESS. SAS

programming requirements are minimal (only the appropriate X or

LIBNAME statement is needed) and SAS code updates would not

be necessary after modifying the Excel file. Another significant

advantage to using third party products may be cost, especially if

SAS/ACCESS software is not already licensed. At the time of

writing, a non-academic individual copy (Windows version) of

DBMS/COPY or DBMS/Engines was $295, and Stat/Transfer was

$249. For a general comparison, the cost to lease a single non-

academic user license for one year of either SAS/ACCESS for PC

File Formats or SAS/ACCESS Interface to ODBC is $1,060 or

$1,135 (the lower price if base SAS was licensed prior to 1997).

In addition to cost savings, these products can be extremely

powerful due to the many different data formats, in addition to

SAS data formats, that are supported.

CONCLUSION

Choosing the 'best' method to import Excel data into SAS

depends on many factors. Various aspects of the five methods

discussed are summarized in Table 1 on the following page. With

the exception of PROC SQL, each method also has a way to write

data from SAS to Excel, should this be desired. (Perhaps a

subsequent paper shall address this topic.) Other factors, such

as performance issues and the amount of data to be converted,

should also be taken into consideration. However, there is no

substitute for trial and error. Often the best way to decide is to

simply experiment with as many methods as possible until a

suitable solution is found.

REFERENCES

Asam, Ellen L. and Donna Usavage (1997) “Using Dynamic Data

Exchange Within SAS Software to Directly Access Data From

Microsoft Windows Applications” in Proceedings of the Tenth

Annual Northeast SAS Users Group Conference. pp. 296-297.

Bross, Dean (1997) “Preparing Final Reports Using DDE to Link

SAS Software and Microsoft Word” in Proceedings of the Tenth

Annual Northeast SAS Users Group Conference. pp. 580-589.

Cram, Donald P. (1999) “Excel 2 SAS and Back Webpage”:

http://www-leland.stanford.edu/class/gsb/excel2sas.html.

Engle, Eric W. (1997) “SAS/ACCESS Software: Proc Access a

Quick Start Guide” in Proceedings of the Tenth Annual Northeast

SAS Users Group Conference. pp. 6-9.

Hilbe, Joseph (1996) “Windows File Conversion Software” in

American Statistician, August 1996. pp. 268-270.

Kuligowski, Andrew T. (1999) “Advanced Methods to Introduce

External Data into the SAS System" in Proceedings of the

Twenty-Fourth Annual SAS Users Group International

Conference. Paper 53 pp.345-354.

Lee, Han-li (1997) “Small Chat Between Jim and Bill Under

Windows using DDE” in Proceedings of the Tenth Annual

Northeast SAS Users Group Conference. pp. 53-59.

Li, Leiming (1999) “A Process for Automatically Retrieving

Database Using ODBC and SAS/ACCESS SQL Procedure Pass-

Through Facility” in Proceedings of the Twenty-Fourth Annual

SAS Users Group International Conference. Paper 89 pp. 567-

570.

SAS Institute Inc. (1989) SAS Guide to the SQL Procedure:

Usage and Reference, Version 6, First Edition Cary, NC: SAS

Institute Inc.

SAS Institute Inc. (1994) Getting Started with SAS/ACCESS

Software. Cary, NC: SAS Institute Inc.

SAS Institute Inc. (1995) SAS/ACCESS Software for PC File

Formats: Reference, Version 6, First Edition Cary, NC: SAS

Institute Inc.

SAS Institute Inc. (1996) SAS Companion for the Microsoft

Windows Environment, Version 6, Second Edition Cary, NC: SAS

Institute Inc.

SAS Institute Inc. (1996) “Technical Support Document #325 –

The SAS System and DDE”

http://ftp.sas.com/techsup/download/technote/TS325.ps.

SAS Institute Inc. (1996) “Technical Support Document TS-589B

– Importing Excel Files to SAS Data Sets”

http://ftp.sas.com/techsup/download/technote/ts589b.txt.

SAS Institute Inc. (1997) Window by Window: Capture Your Data

Using the SAS System. Cary, NC: SAS Institute Inc.

SAS Institute Inc. (1999) “SAS Note F885: How to use DDE to

execute Visual Basic Macros from SAS”

http://www.sas.com/service/techsup/unotes/V6/D432.html.

Schreier, Howard (1998) “Getting Started with Dynamic Data

Exchange” in Proceedings of the Sixth Annual Southeastern SAS

Users Group Conference. pp. 207-215.

Smith, Richard and Art Carpenter (1999) “The Use of External

Software to Import Data into the SAS System” in Proceedings of

the Twenty-Fourth Annual SAS Users Group International

Conference. Paper 222. pp.1310-1313.

ACKNOWLEDGEMENTS

Thanks to T. Hagerty, B. Hart, K. Hubbell, J. Kuhn, M. Rhoads,

and I. Whitlock for reviews of this manuscript.

AUTHOR CONTACT

Comments, questions, (and corrections!) are valued and

encouraged. Contact the author at:

Michael T. Mumma

Westat

1650 Research Blvd.

Rockville, MD 20850

Phone: (301) 517-8089

Email: mummam1@westat.com

TRADEMARKS

SAS and SAS/ACCESS software are registered trademarks of

SAS Institute Inc. in the USA and other countries. DBMS/COPY

and DBMS/Engines are registered trademarks of Conceptual

Software, Inc. Stat/Transfer is a registered trademark of Circle

Systems, Inc. indicates USA registration.

Table 1 - Summary of Five Methods to Import Excel Data into SAS

Dynamic Data Exchange

 (DDE)

SAS/ACCESS

PROC ACCESS

SAS/ACCESS

V7 PROC IMPORT

SAS/ACCESS

PROC SQL

Third Party Software

Additional Software

Required

None SAS/ACCESS for PC File

Formats

SAS/ACCESS for PC File

Formats

SAS/ACCESS Interface

to ODBC

Excel ODBC drivers

Separate product

Programming

Requirements

-DATA step with INPUT

-PUT statements to issue DDE

commands

-X statement to invoke Excel

-PROC ACCESS

(Creation of access and

view descriptors)

-PROC IMPORT -PROC SQL statement

-DSN configuration

-X statement(s)

-LIBNAME statement

Excel status during

transfer

Open Closed Open/Closed Open/Closed DBMS/COPY–Closed

DBMS/Engines-Closed

Stat/Transfer-Open /Closed

Excel formats

supported

Excel 4, 5, 7, 97 Excel 4, 5, 7 Excel 4 , 5, 7, 97 Installed ODBC drivers Product dependent

(Most supported)

Documentation/SUG

papers

-SAS Companion for the

Microsoft Windows Environment

-SAS TSD #325, Note F885

-Kuligowski (1999)

-Lee (1997)

-Schreier (1998)

-Web site (Cram 1999)

-Getting Started with

SAS/ACCESS Software

-Engle (1997)

- v7 Online Documentation -Getting Started with

SAS/ACCESS Software

- SAS Guide to the SQL

Procedure

-Kuligowski (1999)

-Li (1999)

-Software documentation

-Smith and Carpenter (1999)

SAS Version 6.08 and later 6.11 and later 7.0 6.10 Product dependent

Analogous Method to

Convert SAS to Excel

DDE PROC DBLOAD PROC EXPORT None DBMS/COPY–new program

DBMS/Engines-DATA step

Stat/Transfer-new X statement

Data Range Defined in DDE triplet Range statement optional

Absolute or named range

Range statement optional

Named range only

No option

No extraneous text

Product dependent

